Cryptocephal, the Drosophila melanogaster ATF4, Is a Specific Coactivator for Ecdysone Receptor Isoform B2
نویسندگان
چکیده
The ecdysone receptor is a heterodimer of two nuclear receptors, the Ecdysone receptor (EcR) and Ultraspiracle (USP). In Drosophila melanogaster, three EcR isoforms share common DNA and ligand-binding domains, but these proteins differ in their most N-terminal regions and, consequently, in the activation domains (AF1s) contained therein. The transcriptional coactivators for these domains, which impart unique transcriptional regulatory properties to the EcR isoforms, are unknown. Activating transcription factor 4 (ATF4) is a basic-leucine zipper transcription factor that plays a central role in the stress response of mammals. Here we show that Cryptocephal (CRC), the Drosophila homolog of ATF4, is an ecdysone receptor coactivator that is specific for isoform B2. CRC interacts with EcR-B2 to promote ecdysone-dependent expression of ecdysis-triggering hormone (ETH), an essential regulator of insect molting behavior. We propose that this interaction explains some of the differences in transcriptional properties that are displayed by the EcR isoforms, and similar interactions may underlie the differential activities of other nuclear receptors with distinct AF1-coactivators.
منابع مشابه
Analysis of transcriptional activity mediated by Drosophila melanogaster ecdysone receptor isoforms in a heterologous cell culture system.
Ecdysteroid regulation of gene transcription in Drosophila melanogaster and other insects is mediated by a heterodimer comprised of Ultraspiracle (USP) and one of three ecdysone receptor (EcR) isoforms (A, B1 and B2). This study revealed that the EcR/USP heterodimer displays isoform-specific capabilities. EcRB1 is normally induced with a form of USP that is missing its DNA-binding domain (DBD),...
متن کاملIsoform-specific regulation of a steroid hormone nuclear receptor by an E3 ubiquitin ligase in Drosophila melanogaster.
The steroid hormone 20-hydroxyecdysone (20E) regulates gene transcription through the heterodimeric nuclear receptor composed of ecdysone receptor (EcR) and Ultraspiracle (USP). The EcR gene encodes three protein isoforms--A, B1, and B2--with variant N-terminal domains that mediate tissue and developmental stage-specific responses to 20E. Ariadne-1a is a conserved member of the RING finger fami...
متن کاملThe cryptocephal gene (ATF4) encodes multiple basic-leucine zipper proteins controlling molting and metamorphosis in Drosophila.
The cryptocephal (crc) mutation causes pleiotropic defects in ecdysone-regulated events during Drosophila molting and metamorphosis. Here we report that crc encodes a Drosophila homolog of vertebrate ATF4, a member of the CREB/ATF family of basic-leucine zipper (bZIP) transcription factors. We identified three putative protein isoforms. CRC-A and CRC-B contain the bZIP domain, and CRC-D is a C-...
متن کاملTranscription activation by the ecdysone receptor (EcR/USP): identification of activation functions.
The ecdysone receptor is a heterodimer of the two nuclear receptors EcR and ultraspiracle (USP). We have identified the regions of Drosophila EcR and USP responsible for transcriptional activation of a semisynthetic Eip71CD promoter in Kc cells. The isoform-specific A/B domains of EcR-B1 and B2, but not those of EcR-A or USP, exhibit strong activation activity [activation function 1 (AF1)], bot...
متن کاملTranscriptional activity of Drosophila melanogaster ecdysone receptor isoforms and ultraspiracle in Saccharomyces cerevisiae.
The Drosophila melanogaster ecdysone receptor (EcR) is produced in three isoforms, which mediate developmental processes such as metamorphosis. These isoforms were expressed in Saccharomyces cerevisiae to elucidate aspects of receptor transcription activity in a highly defined genetic model system. All three EcR isoforms showed ligand-independent transcriptional activation of an ecdysone report...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2012